🚀 Try Zilliz Cloud, the fully managed Milvus, for free—experience 10x faster performance! Try Now>>

Milvus
Zilliz

How do I set up Haystack in my Python environment?

To set up Haystack in your Python environment, begin by installing the package and verifying dependencies. Haystack requires Python 3.7+ and can be installed via pip with pip install farm-haystack. For specific use cases like working with databases or machine learning models, you may need extras. For example, pip install "farm-haystack[all]" installs all optional dependencies, including support for Elasticsearch, Hugging Face models, and cloud services. If you plan to use Elasticsearch as a document store, ensure it’s running locally (e.g., via Docker with docker run -d -p 9200:9200 -e "discovery.type=single-node" elasticsearch:8.9.0) or configure connection details for a remote instance.

Next, configure your document store and processing pipeline. Haystack uses document stores (like InMemoryDocumentStore, ElasticsearchDocumentStore, or PostgreSQLDocumentStore) to manage data. For example, initialize an Elasticsearch-backed store:

from haystack.document_stores import ElasticsearchDocumentStore 
document_store = ElasticsearchDocumentStore(host="localhost", index="my_docs")

To ingest files, convert them into Haystack Document objects using FileTypeClassifier, TextConverter, or PDFConverter. Create a preprocessing pipeline to clean and split text:

from haystack.nodes import PreProcessor 
processor = PreProcessor(split_length=200, split_overlap=20) 
docs = processor.process([Document(content="...")]) 
document_store.write_documents(docs)

Finally, set up a retrieval or question-answering pipeline. For semantic search, use a Retriever (e.g., BM25Retriever for keyword-based search or EmbeddingRetriever with a model like sentence-transformers/all-MiniLM-L6-v2). Add a Reader (like TransformersReader) for extractive QA:

from haystack.pipelines import ExtractiveQAPipeline 
from haystack.nodes import BM25Retriever, TransformersReader 
retriever = BM25Retriever(document_store=document_store) 
reader = TransformersReader(model_name_or_path="deepset/bert-base-cased-squad2") 
pipeline = ExtractiveQAPipeline(retriever, reader) 
results = pipeline.run(query="What is Haystack?", params={"Retriever": {"top_k": 3}, "Reader": {"top_k": 1}}) 

Test your setup by running queries and validating outputs. For scalability, consider using Haystack’s REST API or cloud integrations for distributed workloads.

Like the article? Spread the word