milvus-logo
LFAI
Home
  • User Guide

Filtered Search

An ANN search finds vector embeddings most similar to specified vector embeddings. However, the search results may not always be correct. You can include filtering conditions in a search request so that Milvus conducts metadata filtering before conducting ANN searches, reducing the search scope from the whole collection to only the entities matching the specified filtering conditions.

Overview

If a collection contains both vector embeddings and their metadata, you can filter metadata before ANN search to improve the relevancy of the search result. Once Milvus receives a search request carrying a filtering condition, it restricts the search scope within the entities matching the specified filtering condition.

Filtered search Filtered search

As shown in the above diagram, the search request carries chunk like % red % as the filtering condition, indicating that Milvus should conduct the ANN search within all the entities that have the word red in the chunk field. Specifically, Milvus does the following:

  • Filter entities that match the filtering conditions carried in the search request.

  • Conduct the ANN search within the filtered entities.

  • Returns top-K entities.

Examples

This section demonstrates how to conduct a filtered search. Code snippets in this section assume you already have the following entities in your collection. Each entity has four fields, namely id, vector, color, and likes.

[
    {"id": 0, "vector": [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592], "color": "pink_8682", "likes": 165},
    {"id": 1, "vector": [0.19886812562848388, 0.06023560599112088, 0.6976963061752597, 0.2614474506242501, 0.838729485096104], "color": "red_7025", "likes": 25},
    {"id": 2, "vector": [0.43742130801983836, -0.5597502546264526, 0.6457887650909682, 0.7894058910881185, 0.20785793220625592], "color": "orange_6781", "likes": 764},
    {"id": 3, "vector": [0.3172005263489739, 0.9719044792798428, -0.36981146090600725, -0.4860894583077995, 0.95791889146345], "color": "pink_9298", "likes": 234},
    {"id": 4, "vector": [0.4452349528804562, -0.8757026943054742, 0.8220779437047674, 0.46406290649483184, 0.30337481143159106], "color": "red_4794", "likes": 122},
    {"id": 5, "vector": [0.985825131989184, -0.8144651566660419, 0.6299267002202009, 0.1206906911183383, -0.1446277761879955], "color": "yellow_4222", "likes": 12},
    {"id": 6, "vector": [0.8371977790571115, -0.015764369584852833, -0.31062937026679327, -0.562666951622192, -0.8984947637863987], "color": "red_9392", "likes": 58},
    {"id": 7, "vector": [-0.33445148015177995, -0.2567135004164067, 0.8987539745369246, 0.9402995886420709, 0.5378064918413052], "color": "grey_8510", "likes": 775},
    {"id": 8, "vector": [0.39524717779832685, 0.4000257286739164, -0.5890507376891594, -0.8650502298996872, -0.6140360785406336], "color": "white_9381", "likes": 876},
    {"id": 9, "vector": [0.5718280481994695, 0.24070317428066512, -0.3737913482606834, -0.06726932177492717, -0.6980531615588608], "color": "purple_4976", "likes": 765}
]

The search request in the following code snippet carries a filtering condition and several output fields.

from pymilvus import MilvusClient

client = MilvusClient(
    uri="http://localhost:19530",
    token="root:Milvus"
)

query_vector = [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592]

res = client.search(
    collection_name="my_collection",
    data=[query_vector],
    limit=5,
    # highlight-start
    filter='color like "red%" and likes > 50',
    output_fields=["color", "likes"]
    # highlight-end
)

for hits in res:
    print("TopK results:")
    for hit in hits:
        print(hit)

import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.vector.request.SearchReq
import io.milvus.v2.service.vector.request.data.FloatVec;
import io.milvus.v2.service.vector.response.SearchResp

MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
        .uri("http://localhost:19530")
        .token("root:Milvus")
        .build());

FloatVec queryVector = new FloatVec(new float[]{0.3580376395471989f, -0.6023495712049978f, 0.18414012509913835f, -0.26286205330961354f, 0.9029438446296592f});
SearchReq searchReq = SearchReq.builder()
        .collectionName("filtered_search_collection")
        .data(Collections.singletonList(queryVector))
        .topK(5)
        .filter("color like \"red%\" and likes > 50")
        .outputFields(Arrays.asList("color", "likes"))
        .build();

SearchResp searchResp = client.search(searchReq);

List<List<SearchResp.SearchResult>> searchResults = searchResp.getSearchResults();
for (List<SearchResp.SearchResult> results : searchResults) {
    System.out.println("TopK results:");
    for (SearchResp.SearchResult result : results) {
        System.out.println(result);
    }
}

// Output
// TopK results:
// SearchResp.SearchResult(entity={color=red_4794, likes=122}, score=0.5975797, id=4)
// SearchResp.SearchResult(entity={color=red_9392, likes=58}, score=-0.24996188, id=6)

import (
    "context"
    "log"

    "github.com/milvus-io/milvus/client/v2"
    "github.com/milvus-io/milvus/client/v2/entity"
)

func ExampleClient_Search_filter() {
        ctx, cancel := context.WithCancel(context.Background())
        defer cancel()

        milvusAddr := "127.0.0.1:19530"
        token := "root:Milvus"

        cli, err := client.New(ctx, &client.ClientConfig{
                Address: milvusAddr,
                APIKey:  token,
        })
        if err != nil {
                log.Fatal("failed to connect to milvus server: ", err.Error())
        }

        defer cli.Close(ctx)

        queryVector := []float32{0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592}

        resultSets, err := cli.Search(ctx, client.NewSearchOption(
                "filtered_search_collection", // collectionName
                3,             // limit
                []entity.Vector{entity.FloatVector(queryVector)},
        ).WithFilter(`color like "red%" and likes > 50`).WithOutputFields("color", "likes"))
        if err != nil {
                log.Fatal("failed to perform basic ANN search collection: ", err.Error())
        }

        for _, resultSet := range resultSets {
                log.Println("IDs: ", resultSet.IDs)
                log.Println("Scores: ", resultSet.Scores)
        }
        // Output:
        // IDs:
        // Scores:
}


import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const address = "http://localhost:19530";
const token = "root:Milvus";
const client = new MilvusClient({address, token});

const query_vector = [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592]

const res = await client.search({
    collection_name: "filtered_search_collection",
    data: [query_vector],
    limit: 5,
    // highlight-start
    filters: 'color like "red%" and likes > 50',
    output_fields: ["color", "likes"]
    // highlight-end
})

export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/search" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "quick_setup",
    "data": [
        [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592]
    ],
    "annsField": "vector",
    "filter": "color like \"red%\" and likes > 50",
    "limit": 3,
    "outputFields": ["color", "likes"]
}'
# {"code":0,"cost":0,"data":[]}

The filtering condition carried in the search request reads color like "red%" and likes > 50. It uses the and operator to include two conditions: the first one asks for entities that have a value starting with red in the color field, and the other asks for entities with a value greater than 50 in the likes field. There are only two entities meeting these requirements. With the top-K set to 3, Milvus will calculate the distance between these two entities to the query vector and return them as the search results.

[
    {
        "id": 4, 
        "distance": 0.3345786594834839,
        "entity": {
            "vector": [0.4452349528804562, -0.8757026943054742, 0.8220779437047674, 0.46406290649483184, 0.30337481143159106], 
            "color": "red_4794", 
            "likes": 122
        }
    },
    {
        "id": 6, 
        "distance": 0.6638239834383389"entity": {
            "vector": [0.8371977790571115, -0.015764369584852833, -0.31062937026679327, -0.562666951622192, -0.8984947637863987], 
            "color": "red_9392", 
            "likes": 58
        }
    },
]

For more information on the operators that you can use in metadata filtering, refer to Metadata Filtering.

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
Feedback

Was this page helpful?